China Best Sales Heavy-Duty Custom Alloy Steel Hot Forging Rope Pulley, 20-Ton Capacity wholesaler

Product Description

 Densen customized Alloy steel Super large hot Forging rope pulley

We have professionals to solve your questions, please contact us directly!

Product Description

Type 

 Wheels

Application

 Train and Elevator

Processing

Hot forging and machining

Material

 Alloy steel

Weight 

1T~ 20T

Tolernace

Controlled by ISO 8062 CT4-6

Design Support

Pro-E, UG,SolidWorks,AutoCad, PDF  

Quality Control

Material, Dimension,Performance,inside defects,Balance test

Standard

ASTM,DIN,JIS,ISO,GB standards 

Products show:

Declaration:

 Products shown herein are made to the requirements of specific customers and are illustrative of the types of manufacturing capabilities available within CHINAMFG group of companies.

Our policy is that none of these products will be sold to 3rd parties without written consent of the customers to whom the tooling, design and specifications belong.  

Company Information

HangZhou New CHINAMFG Casting and Forging Company is the sales company of HangZhou CHINAMFG Group of Companies. Features of New CHINAMFG simply summarized as below:

1. Trusted supplier of steel, iron & non-ferrous components;

2. Extensive documented quality program in place. 

3. Castings, forgings, stampings, machining, welding & fabrication services.

4. 9 related factories, over 50 joint-venture sub-contractors.

5. 25+ years of manufacturing experiences, 10+ years of exporting experience

6. 100% of products sold to overseas customers.

7. 50% of customer base is forturne 500 companies. 

Processing support

Casting Service:

Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. 

 New Densen offers multiple investment casting, sand casting, permanent casting, die casting, low pressure casting, ESR casting, lost foam casting, etc. Material can be handled include steel, iron, non-ferrous. Single component weight range is from 0.01Kg to 150 tons separately. 

 

 Forging Service:

Forging is a manufacturing process involving the shaping of metal using localized compressive forces. New CHINAMFG offers open die forging, closed die forging and ring forging services. Material can be steel, iron and non-ferrous. Material can be handled include steel, iron, non-ferrous. Single component weight range is from 0.1Kg to 50,000Kgs.

 

Stamping Service:

Stamping (also known as punching) is the process of placing flat sheet metal in either blank or coil form into a stamping press where a tool and die surface forms the metal into a net shape.

 New Densen-XBL has more than 60 sets stamping equipments, is the designed supplier for several famous bands automotive companies, has the full ability to offer whole processes from blanking, stamping, welding, to electrostatic spraying for CHINAMFG customers.

 

Welding & Fabrication Service: 

Welding Frabrication is the fabrication process of metal structures by cutting, bending, then assembling the components together through welding 

 New CHINAMFG offers manual arc welding ,laser welding and robot welding etc. UT, MPT,RT,PT all are available used for inspection, WPS &PQR (Welding Process Specification& Procedure Qualification Records) before production is available under clients’ requirement.  

 

 Machining Service: 

Machining is any of various processes in which a piece of raw material is cut into a desired final shape and size by a controlled material-removal process. 

New Densen-XBL has more than 60 sets precision machines incl. CNC center, boring, milling, lathing, etc., and more than 300 inspection instruments incl. 3 sets CMM with grade μm. Repeated tolerance can be maintained as 0.02mm. Meanwhile awarded by certificates ISO9001-2008; ISO/TS16949. New Densen-XBL specialized in high precise machining for small-middle-big metal components. 

 

3rd Party Inspection:

New Densen worked as 3rd party inspection center besides its sister factories or sub-contractors’ self inspection, Offers process inspection, random inspection and before delivedry inspection services for material, mechanical, inside defects, dimentional, pressure, load, balance, surface treatment,  visual inspection and test. Weekly project follow-up report together with pictures and videos, full quality inspection documentation available. 

New CHINAMFG also designed as 3rd party inspection representative for several customers when their products made by other suppliers. 

Contact us

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Pressure Casting
Application: Machinery Parts
Material: Iron
Heat Treatment: Quenching
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

heavy duty pulley

How are heavy-duty pulleys integrated into overhead crane systems?

Heavy-duty pulleys are integral components in overhead crane systems, playing a critical role in the safe and efficient lifting and movement of heavy loads. These pulleys are specifically designed and integrated into the crane system to handle the demanding requirements of overhead lifting. Here’s a detailed explanation of how heavy-duty pulleys are integrated into overhead crane systems:

Trolley and Bridge Systems:

The trolley and bridge systems in an overhead crane comprise the main structural components that support the lifting mechanism and facilitate horizontal movement. Heavy-duty pulleys are incorporated into these systems to enable smooth and controlled movement. The trolley system consists of a trolley frame that carries the hoist and moves along the bridge. Heavy-duty pulleys are mounted on the trolley frame, allowing the hoist to move horizontally along the bridge. Similarly, heavy-duty pulleys are integrated into the bridge system, enabling the bridge to traverse the length of the crane runway.

Hoisting Mechanism:

The hoisting mechanism is responsible for lifting and lowering the load in an overhead crane system. Heavy-duty pulleys are an essential part of the hoisting mechanism, supporting the load-bearing cables or chains. These pulleys are typically located at the top of the crane structure and guide the cables or chains as they raise and lower the load. Heavy-duty pulleys with large sheave diameters are used to minimize stress concentration on the cables or chains, ensuring safe and reliable lifting operations.

Wire Rope or Chain Path:

In overhead crane systems, heavy-duty pulleys are strategically positioned to guide the wire ropes or chains along the desired path. The pulleys are designed to minimize friction and wear on the lifting elements, ensuring smooth and efficient movement. Proper alignment and positioning of the pulleys help prevent the wire ropes or chains from becoming tangled or deviating from their designated path, promoting safe and reliable lifting operations.

Load Distribution and Balancing:

Heavy-duty pulleys aid in load distribution and balancing within an overhead crane system. The pulleys help distribute the weight of the load evenly across the lifting elements, minimizing stress concentration and ensuring safe lifting. By properly balancing the load, heavy-duty pulleys contribute to the stability and control of the crane system, preventing accidents and equipment damage.

Sheave Diameter and Bearing Systems:

The sheave diameter of heavy-duty pulleys in overhead crane systems is carefully selected to match the specific requirements of the application. The larger sheave diameter helps reduce the bending stress on the wire ropes or chains, enhancing their lifespan and reliability. Additionally, heavy-duty pulleys employ robust bearing systems, such as sealed ball bearings or roller bearings, to ensure smooth rotation and minimize friction during lifting operations.

Safety Features:

Heavy-duty pulleys integrated into overhead crane systems often incorporate safety features to enhance operational safety. These may include emergency stop mechanisms, overload protection systems, or monitoring devices that provide feedback on the load capacity and operating conditions. The inclusion of such safety features helps prevent accidents, equipment damage, and ensures compliance with safety regulations.

Overall, heavy-duty pulleys are integrated into overhead crane systems to facilitate smooth movement, support the hoisting mechanism, guide wire ropes or chains, distribute and balance the load, and enhance safety. Their robust construction, appropriate sheave diameter, and proper positioning contribute to the reliable and efficient operation of overhead cranes, enabling the lifting and movement of heavy loads in various industrial applications.

heavy duty pulley

How are heavy-duty pulleys used in mining and quarrying operations?

Heavy-duty pulleys play a crucial role in mining and quarrying operations, where they are utilized in various applications to facilitate efficient material handling and extraction processes. These robust components are designed to withstand the demanding conditions of mining and quarrying environments and contribute to the productivity and safety of these operations. Here’s a detailed explanation of how heavy-duty pulleys are used in mining and quarrying operations:

  • Conveyor Systems: Heavy-duty pulleys are integral components of conveyor systems in mining and quarrying operations. They are used to support and guide conveyor belts, enabling the transportation of bulk materials such as ore, coal, gravel, or aggregates. These pulleys provide the driving force for the belts, facilitating the continuous movement of materials along the conveyor line. Heavy-duty pulleys ensure smooth operation, efficient material transfer, and reliable performance of conveyor systems in rugged mining and quarrying environments.
  • Hoisting Systems: In underground mining operations, heavy-duty pulleys are employed in hoisting systems to lift and lower heavy loads, including ore, equipment, or personnel. These pulleys are used in conjunction with hoists or winches to provide the necessary mechanical advantage for vertical material movement. Heavy-duty pulleys ensure the safe and controlled lifting and lowering of loads, contributing to the efficiency and productivity of mining operations.
  • Crushers and Screens: Heavy-duty pulleys are utilized in crushers and screens used in mining and quarrying operations. They are incorporated into the drive systems of crushers and screens to facilitate the movement and processing of raw materials. Pulleys help drive belts or other power transmission components, enabling the crushing, screening, and separation of materials such as stone, ore, or aggregates. These pulleys ensure the reliable and efficient operation of crushers and screens, contributing to the production of high-quality final products.
  • Dragline Systems: Heavy-duty pulleys are an essential part of dragline systems used in large-scale mining operations. Draglines are massive machines that excavate and remove overburden or ore in open-pit mines. Heavy-duty pulleys are incorporated into the dragline’s hoist system, enabling the lifting and movement of the dragline bucket or dragline chains. These pulleys provide the necessary mechanical advantage to handle the immense loads encountered in dragline operations, allowing for efficient material extraction.
  • Overhead Cranes: Heavy-duty pulleys are utilized in overhead crane systems in mining and quarrying operations. Overhead cranes are used for various tasks, including equipment maintenance, material handling, and transportation within the mining or quarrying site. Pulleys are integrated into the overhead crane’s lifting mechanisms, allowing for smooth and controlled movement of heavy loads. Heavy-duty pulleys ensure the safe and efficient operation of overhead cranes, contributing to the productivity and safety of mining and quarrying operations.
  • Dewatering Systems: Heavy-duty pulleys are employed in dewatering systems used in mining and quarrying operations. Dewatering is essential to remove excess water from mining pits, quarries, or processing areas. Pulleys are utilized in pumps or dewatering equipment, enabling the movement and transfer of water from the site. Heavy-duty pulleys ensure the reliable operation of dewatering systems, facilitating the extraction and management of water to maintain safe and productive working conditions.
  • Load Distribution: Heavy-duty pulleys are used in mining and quarrying operations to distribute the weight of loads evenly, ensuring safe and efficient material handling. By incorporating multiple pulleys and balancing the load, the weight is distributed across the lifting or conveying system, minimizing strain and reducing the risk of equipment damage. This load distribution feature of heavy-duty pulleys enables the safe and effective movement of materials, contributing to the overall efficiency of mining and quarrying operations.

Overall, heavy-duty pulleys are indispensable in mining and quarrying operations. They are utilized in conveyor systems, hoisting systems, crushers, screens, dragline systems, overhead cranes, dewatering systems, and load distribution applications. By providing reliable power transmission, smooth movement, and load handling capabilities, heavy-duty pulleys contribute to the productivity, safety, and efficiency of material handling and extraction processes in the mining and quarrying industry.

heavy duty pulley

How does the size and design of a heavy-duty pulley impact its load-bearing capacity?

The size and design of a heavy-duty pulley play a significant role in determining its load-bearing capacity. These factors directly influence the pulley’s ability to support and distribute the weight of heavy loads effectively. Here’s a detailed explanation of how the size and design of a heavy-duty pulley impact its load-bearing capacity:

Size:

The size of a heavy-duty pulley refers to the diameter of its sheave or wheel. In general, larger pulleys have a higher load-bearing capacity compared to smaller pulleys. This is because larger pulleys provide a larger contact area for the cable or rope, distributing the load over a greater surface area. The larger contact area reduces stress concentration on the cable or rope, minimizing the risk of premature wear or failure. Additionally, larger pulleys allow for a more gradual bend radius, which helps prevent excessive bending and fatigue of the cable or rope. Thus, a larger-sized pulley can handle heavier loads more effectively and safely.

Design:

The design of a heavy-duty pulley encompasses various aspects that impact its load-bearing capacity:

  • Sheave Diameter: The diameter of the sheave directly affects the mechanical advantage of the pulley system. A larger sheave diameter increases the mechanical advantage, allowing for easier lifting of heavy loads. This means that a heavy-duty pulley with a larger sheave diameter can handle heavier loads more efficiently.
  • Hub Construction: The hub of the pulley, which connects the sheave to the axle or shaft, should be designed to withstand the stresses induced by heavy loads. Heavy-duty pulleys often have reinforced hubs that can handle higher loads without deformation or failure. The hub design should provide sufficient strength and rigidity to ensure the stability and integrity of the pulley under load.
  • Bearing System: The bearing system of a heavy-duty pulley is crucial for smooth rotation and load distribution. High-quality bearings, such as sealed or shielded ball bearings, are commonly used in heavy-duty pulleys to minimize friction and ensure reliable operation under heavy loads. The bearing system should be designed to handle the anticipated loads and provide long-term durability and performance.
  • Material Strength: Heavy-duty pulleys are typically made from strong and durable materials such as steel or cast iron. The material strength is a critical factor in determining the load-bearing capacity of the pulley. A robust material construction ensures that the pulley can withstand the high loads without deformation or failure. Additionally, the material should have good resistance to wear, corrosion, and other environmental factors that may affect the pulley’s performance and longevity.
  • Structural Reinforcement: Heavy-duty pulleys often incorporate structural reinforcements to enhance their load-bearing capacity. This may include features such as thicker rims, additional ribs, or gussets that provide increased strength and rigidity. The structural reinforcement helps to distribute the load more evenly throughout the pulley, reducing stress concentration and improving overall load-bearing capacity.

In summary, the size and design of a heavy-duty pulley have a direct impact on its load-bearing capacity. Larger pulleys with larger sheave diameters provide a larger contact area and more gradual bend radius, allowing them to handle heavier loads more effectively. The design elements, such as hub construction, bearing system, material strength, and structural reinforcement, further contribute to the pulley’s load-bearing capacity by ensuring stability, durability, and even load distribution. When selecting a heavy-duty pulley, it is crucial to consider its size and design features to ensure it can handle the intended high-load tasks safely and efficiently.

China Best Sales Heavy-Duty Custom Alloy Steel Hot Forging Rope Pulley, 20-Ton Capacity   wholesaler China Best Sales Heavy-Duty Custom Alloy Steel Hot Forging Rope Pulley, 20-Ton Capacity   wholesaler
editor by CX